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The supersymmetric product of a supercurve is constructed with the aid of a theorem
of algebraic invariants and the notion of positive relative superdivisor (supervortex) is
introduced. A supercurve of positive superdivisors of degree 1 (supervortices of vortex
number 1) of the original supercurve is constructed as its supercurve of conjugate fermions,
as well as the supervariety of relative positive superdivisors of degree p (supervortices of
vortex number p). A universal superdivisor is defined and it is proved that every positive
relative superdivisor can be obtained in a unique way as a pull-back of the universal
superdivisor. The case of SUSY-curves is discussed.
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1. Introduction

Positive divisors of degree p on an algebraic curve X can be thought of as
unordered sets of p points of X, hence, as elements of the symmetric p-fold
product S X. The symmetric p-fold product is the orbit space of the cartesian
p-fold product X? under the natural action of the symmetric group, and it is
thus endowed with a natural structure of algebraic variety. In this way, positive
divisors of degree p are the points of an algebraic variety Div? (X)), and this
variety is of great importance in the study of the geometry of curves, and it also
has a growing interest in Mathematical Physics.

From the geometrical side, one has, for instance, the role played by the variety
of positive divisors of degree p in some classical constructions of the Jacobian
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variety of a complete smooth algebraic curve. The first construction of the Ja-
cobian variety, due to Jacobi and Abel, is of an analytic nature and defines the
Jacobian as a complex torus through the period matrix. The first algebraic con-
struction is due to Weil [31], who showed that the algebraic structure and the
group law of the Jacobian come from the fact that it is birationally equivalent
to the variety of positive divisors of degree the genus of the curve. Another pro-
cedure stems from Chow [7], who took advantage of the fact that for p high
enough the Abel map (that maps a divisor of degree p into its linear equivalence
class) is a projective bundle, to endow the Jacobian with a structure of projective
algebraic group. But regardless of the method used for constructing the Jacobian,
the structure of the variety of positive divisors of degree p and the diverse Abel
morphisms from these varieties to the Jacobian, turn out to be a key point in the
theory of Jacobian varieties (see, for instance, refs. [17,25]) and has proved to
be an important tool in the solution of the Schottky problem [26].

From the physical point of view, the variety of positive divisors of a complex
complete smooth curve X (a compact Riemann surface) is the variety of vortices
or solutions to the vortex equations [5,10]. For every holomorphic line bundle L
on X endowed with a hermitian metric, there is a Yang-Mills-Higgs functional
YMH, (V, ¢) defined on gauge equivalence classes of pairs (V,¢) where V is a
unitary connection, by

YMH. (V,¢) = /(IFV|2 + VP + Lo ® ¢ x —t1d) du,

where Fy is the curvature, V¢ the covariant derivative, and 7 is a real parameter
(see ref. [5]).

Bradlow’s theorem states that for large 7, gauge equivalence classes of solutions
(V,¢) to the vortex equation

YMH.(V,¢) = 2apt,

where p is the degree of L with respect to the Kdhler form, correspond to divisors
of degree p on X. In this correspondence, a solution (V, ¢) corresponds to the
divisor given by the set of centres of the vortices appearing with multiplicity
given by the multiplicity of the magnetic flux.

There is no similar theory for supersymmetric extensions of the vortex equa-
tions (supervortices), and in fact only very little work on supervortices or su-
persymmetric extensions of the Bogomolny equations has been done (see ref.
[20]). This paper will provide a first step in that direction, by providing the
right supervariety of positive superdivisors or supervortices on a supercurve.

This paper is organized as follows:

The supersymmetric product SP X for a supercurve X of dimension (1,1) is
constructed in section 2 as the orbit ringed space obtained through the action of
the symmetric group on the cartesian p-fold product of X. It is far from trivial
that the resulting graded ringed space is a supervariety of dimension (p,p), a
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statement which is shown to be equivalent to an invariant theorem. It should
be stressed that this theorem is no longer true for supercurves of higher odd
dimension, but our result covers the most important cases such as SUSY-curves.

In section 3 the notion of positive relative superdivisor of degree p for a relative
supercurve X x & — & is given. The classical definition cannot be extended
straightforwardly to supercurves if we wish that superdivisors could be obtained
as pull-backs of a suitable universal superdivisor.

For ordinary algebraic curves, positive divisors of degree 1 are just points. The
novelty here is that for an algebraic supercurve X, positive relative superdivisors
of degree 1 (supervortices of vortex number 1) are are not points of X (see
ref. [23]), but rather they are points of another supercurve X° with the same
underlying ordinary (bosonic) curve. Actually, if we think of X’ as a field of
fermions on a bosonic curve, the supercurve X’ is the supercurve of conjugate
fermions on the underlying bosonic curve.

This is proven in section 4, which also contains the representability theorem
for positive relative superdivisors of degree p on a supercurve. The theorem
means that positive relative superdivisors of degree p are the points of the su-
persymmetric p-fold product S? X° of the supercurve X° of conjugate fermions.
This property is stated in the spirit of Algebraic Geometry in terms of the functor
of the points; the precise statement is that the functor of the positive relative
superdivisors of degree p of a supercurve X of odd dimension 1, is the functor
of the points of the supersymmetric p-fold product $? X*. This means that every
positive relative superdivisor of X x S — & can be obtained in a unique way as
the pull-back of a certain universal positive superdivisor through a morphism
S — SPX°. We obtain in that way what is the right structure of algebraic super-
scheme the “space” of positive superdivisors of degree p on a supercurve can be
endowed with.

The case of supersymmetric curves (SUSY-curves) is particularly important,
both for historical and geometrical reasons. We prove that for a supercurve X,
the existence of a conformal structure on & is equivalent to the existence of
an isomorphism between X and the supercurve X° of conjugate fermions. In
other words, a supercurve X is a SUSY-curve if and only if X’ is isomorphic
with X¢. In this case the universal positive superdivisor of degree 1 is Manin’s
superdiagonal [4,23] and we recover from a clearer and more general viewpoint
Manin’s interpretation of the relationship between points and positive divisors
of degree 1 for SUSY-curves, and some connected definitions [28,29].

Summarizing, the space of supervortices of vortex number p (positive super-
divisors of degree p) on a supercurve X of odd dimension 1, is an algebraic
supervariety of dimension (p,p). This algebraic supervariety is the supervari-
ety SPX° of “unordered families” of p conjugate fermions. Moreover, only for
SUSY-curves are supervortices of vortex number p “unordered families” of p
points of X',



186 J.A. Dominguez et al. / The variety of positive superdivisors

This theory can be extended straightforwardly to SUSY-families parametrized
by an ordinary algebraic scheme.

The results of this paper for the case of SUSY-curves only were stated (without
proofs) in ref. [8].

2. Supersymmetric products

2.1. DEFINITIONS

A suitable reference for schemes theory is ref. [14]; the general theory of
schemes in supergeometry (superschemes) can be found in refs. [22] and [27].

Let X = (X,.A) be a graded ringed space, that is, a pair consisting of a
topological space X endowed with a sheaf .4 of Z,-graded algebras. Let us denote
by J the ideal A; + A2.

Definition 1. A superscheme of dimension (m, n) over a field k, is a graded
ringed space X = (X,.A) where A is a sheaf of graded k-algebras such that:

(i) (X,0 = A/J) is an m-dimensional scheme of finite type over k;

(ii) J/J? is a locally free ©-module of rank 7 and A is locally isomorphic to
No(J/T?).

Definition 2. A superscheme X = (X,.A4) over a field & is said to be affine if
the underlying scheme (X,O = 4/7) is an affine scheme, that is, if there is a
homeomorphism

X =% Spec(I'(X,0))

and O is the sheaf on X defined by localization on the basic open subsets of the
spectrum.

If ¥ = (X, A) is an affine superscheme, and 4 = I' (X, .A), we shall simply
write X = Spec A4 for it.
Let us consider the product

X8 = (X8,A%%),

. )
where X & denotes the cartesian product X x ), x X,and A®% = A® Ee A
The symmetric group S, acts on X4 by graded automorphisms of super-
schemes according to the rule
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o: X8 - X¢,
(x1,...,Xg) (xa(l)a-‘--:xa(g))’
c*: A% - g, A%%,
fieofem [ ~DVMILG e f, (1)
a(i;.:i(j)

where | | stands for the Z,-degree. This action reduces to the ordinary action
of S; on the scheme (X4, 0®¢). Then, we have the orbit space S4X, a natural
projection p: X2 — S%X, and an invariant sheaf O, = OS5 on S8X, whose
sections on an open subset V' C S&X are

O (V) ={f € 0% (p~ 1 (V))|o*f = f forevery g € S,}.

It is well known that, if (X,O) is a projective scheme, the ringed space
(S%X,0;) is a scheme, the symmetric p-fold product of (X,©) [30, prop. 191.

Let us consider the sheaf A, = (A®#)5 of graded invariants on S&X defined
as above by letting

Ag(V) = {f € A28 (p~'(V))| 0" f = f for every 6 € S;}
for every open subset V' C S%X.

2.2. THE CASE OF SUPERCURVES

Definition 3. A supercurve is a superscheme X of dimension (1,n) over a
field k.

Let X be a smooth proper supercurve, that is, a supercurve such that (X, O)
is proper and smooth.

Theorem 1. Let X = (X, .A) be a smooth proper supercurve of odd dimension n >
0. The graded ringed space S% X is a superscheme ifand only ifn = 1, that is, ifand
only if X is a superscheme of dimension (1,1). In that case, S8X = (S¢X, A;)
is a superscheme of dimension (g, g), which will be called the supersymmetric
g-fold product of X.

Proof. Let us notice that (X, ) is projective (it has very ample sheaves), so
that the ringed space (S¥X, O,) is a scheme as we mentioned above (in fact, it
is smooth, which is no longer true for higher dimensional X ).

As there is a natural projection A; — O, we only have to ascertain if A,
is locally the exterior algebra of a locally free Oz -module. We can thus assume
A = Ap (N), N being a free rank-n O-module.
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Let us writc
Li)
Ni=0® 3N ® -0
and M = N, @ --- & N. Now, if O = O%®¢ and A = A®%, we have

A = Ao(V) 80 F- 80 Ao (V) % Ag(M).
The symmetric group S, acts on M by
o+ -+ ng) = N5y + -+ + Mo

and this action provides an action o: A — A on the exterior algebra A =
Ny (M), given by

oc(mA---Amp) =c(m)AN---No(mp).

This action of S; on A is actually equal to the one defined in (1), because
both coincide on A“—D-(M) = M and are morphisms of graded algebras.

If we denote by MSs the Og-module consisting of the invariant sections of M,
the proof of theorem 1 will be thus completed with the following

Lemma 1. The natural morphism of sheaves of graded Og-algebras over S8 X
¢: No, (M) — (Ag(M))% = Ag,

is an isomorphism if and only if n = 1.

Proof. The proof is a computation of invariants in the exterior algebra of a free
module over a commutative ring, which allows us to use standard methods of
Commutative Algebra (all the results that we shall use can be found, for instance,
in ref. [1]).

Let us start with the case n = 1.

(a) We can assume that X = Spec O, where O is a semilocal ring with g
maximal ideals py,...,Pg, and then, that N = O -e, N; = O - ¢; (where

1i)
€

ei=1®“‘® ®...®1)

andM =0 & - dO0-e,.

Let us notice, first, that ¢ is an isomorphism if and only if it is an isomorphism
when localized at every maximal ideal p of O,. On the other hand, p corresponds
to a divisor D = x| + --- + X, and the fibre of p: X8 — S8X over this point
consists of the family (x;,...,xg) (some of the points can be equal) together
with its permutations. It follows that we are reduced to considering only the
localization of O at these particular points (xi,...,xg).

(b) We can assume that O = k[t] and N = k[¢] - e. Since the completion
morphism L

(Og)p — (Op),
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is a faithfully flat morphism, we are reduced to showing that ¢ is an isomorphism
after completing O, at every maximal ideal.

Let t € O be an element that takes different values (4;,...,4,) at the points
(x1,...,xg) and such that 7 — 4; is a parameter at x; (that is, it generates the
maximal ideal of the local ring Oy, ). Then, k[¢] is a subring of O and moreover,
given two different maximal ideals p; # pj, the maximal ideals p; = p; N k[?]
and p; = p; N k[t] of k[¢t] are also different.

Let] =p;N---Npg, I = p; N--- NP, be the intersection ideals and O — 0,
k[t] — k/[T ] the faithfully flat morphlsms of completion with respect to the
ideals I, T, respectively. Then we have

g
ME H kie), = [[ 0w = 0,
i=1
s0 1] that, if the theorem is true for k {¢] and the module k[¢] - e, it is also true for
k[t] = O and k[t] .e = O - e and then it will be true for @ and N/ = O - e by
faithfull flatness.
(c) The case © = k[t] and NV = k[t] - e. Now, for every 0 < p < g we have
NM)= P NyA-AN,
i< <ip
and S, acts transitively by permutation of terms.
In fact, Ny A-- AN, = 05, i, (N1A---ANp), 6i,..i, € S, being any permutation

of the type
1...p...
Then, an invariant element m = 3, ..., ni, A--- A n;, is characterized by

ny A--- A n, and we have an isomorphism
(N1 A= AN ) 5Ser 2 (AP (M),
MA- ARy Z a(nyA---Anp),
UESg/(prsg—p)

where S, x S;_p, denotes the subgroup of S, consisting of the permutations
leaving invariant the subset {1,...,p}. In particular, (N} )Ss-1 = M5,
Since M{A---AN, = O-e A---Agp, we have

(N A--- /\Np)svxss—p =~ O~5p xS

where @5 *Ss-» stands for the subset of such f € O that (g xu)(f) = sign(o)-
J forevery (o x ) € Sp x Sg—p. Taking p = 1, we obtain

MSs =~ Nfg_n ™ OSe-t
and the original morphism
1 Ao, (M) — (AL(M))St = A,
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is now the morphism
?5,,: APOSs-t — O~ Sp*Ss-»
described by
Gy (fin-Afp) =D sign(w)o,a)(fi)...0u0) (o),
HESp

where o; is the transposition of 1 and i.
Let us prove that ¢, is an isomorphism: There is a commutative diagram

051 @0, - ®0, 0% T, O1xS-

" o,

AB, DSe-1 b, DSxSes
4

where
T(H® - ®fp) =0 (fi)...op([fp),
HA®-®f) =i Afp
H'(f) =) sign(u) (> D(f).

HESp
As O = k[t],0 = kl1,...,1g], if we denote
(51,...,8¢) = symmetric functions of (¢y,...,¢;),
(51,...,5¢—1) = symmetric functions of (13,...,%;),
(81, -..,85_p) = symmetric functions of ({p41,...,1),

we have
Og = k[Sl,...,sg]’
0%t = k[t1,51,...,5-1] = Og[1],
OVSe=r = k), ..., lp, 81, Sp_p] = Oglty, ..., 1p].

If follows that ©O—S»*St—» can be identified with the pth skew-symmetric tensors
of the Og-module OS¢-1 = Og [t ] and the previous diagram reads

) ~
Ogl11]1 @0, - ®0, Oglti] —— Oglti,..., 1]
Hl lHl )

3
No,Og[11] —= Ab,0¢l1]

where now H' is the skew-symmetrization operator, finishing the proof of the if
part.
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To complete the proof, we have to show thatifn > 1, $p is not an isomorphism.
Let us write N = @]_, N7 with A7 of rank 1, and
) g L)
MI —_ @(0@...@]\/‘] ®...®0)
i=1

so that M = @_, M/. Then

NsM) = @@ (MaM'e.. & NEM)S,
Pr+-+ps=p

Moy (M%) = @ Ao (M55 - 0N (M),
Pi+--+4ps=p

By the case n = 1, we have
Di i\Sg ~, Di iv\S,
NG, (M) 2 (NG (MF))%
and then
/\O,(MS:) = @ (Ag‘Ml)Sg®...® (/\IS‘MS)Sx.

PL+-+ps=p

But there are invariant elements in the tensor product (/\%‘.A/tl ® - ® /\’%MS )Se
which cannot be written as tensor products of invariant elements. This means
that the morphism ¢, is not an isomorphism in this case. ]

Corollary 1. If (z, 0) are graded local coordinates on a supercurve X of dimension
(1, 1), a system of graded local coordinates for S8 X is given by (sy,...,5,G15-..,
Gg) where (sy,...,5g) are the (even) symmetric functions of (zy,...,2g) and (¢,
...,Gg) are the odd symmetric functions defined by ¢, = Ele 0 (015,_1).

3. Positive superdivisors

From this point, calligraphic types are reserved for graded ringed spaces and
the structure ring sheaf of any ringed space will be denoted by O with the name
of the ringed space as a subscript. For instance, X = (X, Ox ) or simply X" will
mean a graded ringed space, whereas (X, Ox) or X will represent the underlying
ordinary ringed space.

3.1. THE UNIVERSAL DIVISOR FOR AN ALGEBRAIC CURVE

This section is devoted to a summary of the theory of the variety of positive
divisors and the universal divisor for a (ordinary) smooth proper algebraic
curve X, and to show that the universal property still holds when the space of
parameters is a superscheme. Suitable references are refs. [13] or [16].
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In that case, positive divisors of degree g are unordered families of g points,
and they are then parametrized by the space of such families, that is, by the
symmetric product S€ X. This can be made precise through the notion of relative
divisor.

If S is another scheme, positive relative divisors of X x S — S of degree g are
subschemes Z — X such that Oz is a locally free Og-module of rank g. There is
a nice positive relative divisor Z* of degree g of X x S8X — S8 X, whose fibre
ata point (xy,...,Xg) € S8X is the divisor x; + --- + x of X defined by it. Z"
is called the universal divisor because the map

Hom(S, S¥X) — Div& (X x S),
¢ (1x )~ 1(ZY),

where Div§ (X x S) denotes the set of positive relative divisors of degree g, is
one to one. This means that each positive divisor can be obtained as a puli-back
of the universal divisor; this statement is known as the representability theorem
for the symmetric product.

But it turns out that the above theory is still true when a superscheme is
allowed as the space of parameters, once the corresponding notion of positive
relative divisor has been established.

Definition 4. Let X be an ordinary smooth curve and (S, Os) a superscheme. A
positive relative divisor of degree g of X x & — S is a closed sub-superscheme
Z of X x S of codimension (1,0) defined by a homogeneous ideal J of Oxxs
such that Ox.s/J is a locally free Og-module of rank (g, 0).

The ideal J of a positive relative divisor of degree g is then locally generated
by an element of the type

f=z8—aqz8 ' + -+ (—1)%a,, (2)
where the a;’s are even elements in Og, and Oxxs/J is a free Os-module with

basis (1, z,...,z8"1).
The representability theorem now reads

Theorem 2. Let X be a smooth proper curve over a field k and Z* the universal
divisor. The map
Hom(S, S2X) — Div& (X x S),

¢ (1x¢)~1(Z%), (3)
where Divé (X x 8) denotes the set of positive relative divisors of degree g, is one
to one for every superscheme S. ]

The proof of the representability theorem for ordinary schemes applies to this
case with only minor changes.
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There are two key points for the proof of this theorem. The first one is the
construction of the universal divisor, which can be done as follows: If n;: X8 —
X is the ith projection and 4; is the positive relative divisor of X x X¢ — X¥
obtained by pull-back of the diagonal 4 C X x X throughout 1 x 7;: X x X8 —
X x X we can prove there is a unique positive relative divisor Z" of X x S¢X —
S4X such that

(Ixp)1Z¥ =4+ - + 4,
where p: X8 — S2X is the natural projection. This divisor Z" is the universal
divisor.

The second key point is the so-called “determinant morphism” & — S%Z, Z
being a positive relative divisor of degree g because its composition with S8 Z —
S&X provides the inverse mapping of (3) (see ref. [16]). The determinant
morphism for the locally free Os-module of rank (g, 0) Oz is defined as follows:
Each element b in the invariant sheaf (Oz), = (0%8)5t acts on the Os-module
NosOz of rank (1,0) as the multiplication by a well-determined element det(b)
in Og. This gives rise to a morphism of sheaves (Oz), — Os, and to a morphism
of schemes § — S€ Z. The determinant morphism provides the inverse mapping
of (3) because, if b is an even element in Oy,

1)
bi=1®--® b ©---®1c0%,

and we denote by s;(b) the symmetric functions of by,. .., b;, we have that
a; = det(si(b)) (i=1,...,8),

where z8 — a;z87! 4 .- + (—1)%a, is the characteristic polynomial of b acting
on Oz by multiplication [compare with (2)].

3.2. POSITIVE SUPERDIVISORS ON SUPERCURVES

The above discussion is based on a trivial but important point: positive divi-
sors are families of points. Even in the relative case, positive relative divisors
of degree 1 are “S-points”, that is, sections of X x § — S, and for this reason,
positive divisors of degree g are parametrized by the symmetric product S8 X
and the universal divisor.

For a supercurve X = (X,Oyx), a similar notion could be established, by
defining positive relative superdivisors of X x § — S (S being an arbitrary
superscheme), as closed sub-superschemes of X’ x S of codimension (1,0) flat
over the base superscheme.

This definition has two drawbacks. The first one is that “S-points” are not
superdivisors in that sense because they have codimension (1, 1) and not codi-
mension (1,0) as superdivisors do [23]. The second one is that we cannot ensure
that they are pull-backs of a suitable universal superdivisor.
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We have thus modified the notion of positive relative superdivisors in order
to fulfill the second requirement as follows:
Let (X,Ox) be a smooth supercurve, and (S, Os) a superscheme.

Definition 5. A positive relative superdivisor of degree g of ¥ xS — Sisa closed
sub-superscheme Z of X xS of codimension (1,0) whose reduction Z = Zxx X
is a positive relative divisor of degree g of X x & — S (see definition 4).

Even with our definition, “S-points” are not superdivisors, but as we shall see
later, there is a close relationship between them, at least for SUSY-curves.

Positive relative superdivisors can be described locally in a rather precise way
in the case of a smooth supercurve of dimension (1,1).

In this case, the natural morphism Oy — Oy induces an isomorphism (Oy )g
~ Oy, so that Oy is a module over Oy, there exists a canonical projection
X — X and Oy is in a natural way an exterior algebra Oy = Ay, L, where
L = (Ox), is a line bundle over the ordinary curve X.

Lemma 2. Let X be a smooth supercurve of dimension (1,1). A closed subsuper-
scheme Z of X x S of codimension (1,0) defined by a homogeneous ideal J of
Oxxs IS a positive relative superdivisor of degree g if and only if the following
conditions hold:

(i) Oz = Oxxs/J is alocally free Os-module of dimension (g, g).

(i) If (z,0) is a system of graded local coordinates, J can be locally generated
by an element of type

f =28~ (a+0b)z8" + -+ (=1)%(ag + 6by),

where the a;’s are even and the b;’s are odd elements in Os.

Proof. Let Z be a positive relative superdivisor of degree g defined by a homoge-
neous ideal J of Ox s and let us consider a system of relative local coordinates
(z,8). Then, the reduction Z = Z x x X is a positive relative divisor of degree g
of X x § — S defined by the image J of J by the morphism 7: Oxxs — Oxxs,
so that an element f € J generates J if and only if J is generated by f/ = n(f).
Since J defines a positive relative divisor of degree g of X x S — S, then J has
a generator of type f = z8 —a;z87! 4+ -« + (—1)8a,, where the a;’s are even
elements in Os [seeeq. (2)],and Oz = Oxxs/ J is a free Os-module with basis
(1,z,...,z%). This means that O; = Os [z]/(f). It follows that there is a gen-
erator of J of the form f = f + 6-d and thatd = ¢(z) (mod J) for a certain
polynomial g (z) of degree less than g. In consequence, the element f + 0q(z)
generates J and is of the predicted type. An easy computation now shows that
Oz isarank (g, g) free Os-module with basis (1, z,...,z871,0,0z,...,0z871).

The converse is straightforward. |
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3.3. THE FUNCTOR OF POSITIVE SUPERDIVISORS ON A SUPERCURVE

Let (X, Z) be a supercurve. For every superscheme S let us denote by Divé (X
x &) the set of positive relative superdivisors of degree g of ¥ x § — S. If
¢: S — S is a morphism of superschemes, and Z is a positive relative divisor
of degree g of ¥ x S — S, (1 x ¢)~'Z is a positive relative divisor of degree g
of ¥ x & — &'. In categorial language this essentially means that

S — Divé (X x S)

is a functor.

We whish to show that when X has dimension (1, 1), the above functor is
representable in a similar sense to that of theorem 2. A proof is given in the next
section.

4. The representability theorem for positive superdivisors
on a supercurve of dimension (1, 1)

In what follows, we consider only supercurves X = (X, Oy ) which are smooth,
proper and of dimension (1, 1). This last condition means that the structure sheaf
Oy is canonically isomorphic with Oy @ £ for a certain line bundle £ on the
ordinary underlying curve X.

4.1. THE SUPERCURVE OF POSITIVE SUPERDIVISORS OF DEGREE 1

LetS = (Spec B, B) be an affine superschemeand Z = (Z,0z) — xS = S
a relative superdivisor of degree 1. The structure sheaf Oz is a quotient of the
structure sheaf (Ox © £) ®; B of X x Spec B. We also have that Oz = B& L,
where £ is the image of L&, Bin Oz, since O 5 = B, because Z is a superdivisor
of degree 1. Moreover, £ = L®o B, where B is an Ox-algebra trough the natural
morphism f: Ox — O; = B, so that it is a locally free rank-1 B-module.

It is now clear that the superdivisor Z is characterized by the morphism
f: Ox — Btogether with a morphism f : Ox — Ba L extending /. Thatis, Z is
defined by a morphism f: Ox — B and a derivation 4: Oy — Lo = L ®o, Bi.
But 4 can be understood as an element f4; € Homo, (kx, Lo) = Homy, (kx®o,
L£71,B,) (where kx is the canonical sheaf of X), so that the couple (f,4) is
equivalent to a graded ring morphism g: Ox @ (kx ®o, £L') — B.

The above discusion remains true for arbitrary (non-affine) superschemes S.
This means that the supercurve X'°® = Spec(Ox & L°), where £¢ = kxy Qo,
£~!, will represent the functor of superdivisors of degree 1 of the supercurve
Spec(Ox & L£). The universal divisor, Z} — X x X°, will be the divisor corre-
sponding to the identity morphism Id: S = X° — X*. One can compute this
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superdivisor as above and obtain that it is the closed subsuperscheme whose
ideal sheaf is the kernel of the graded ring morphism:

ER OxdL)®, (Oxa L) = AOX@I(OX[(‘C ®k Ox) ® (Ox ® LF)]
— Noy (L& L°)

givenby a®b — a-bdb-d(a) on Ox®, Oy (taking into account that b-d (a) isa
local section of ky = L®p, L£°) and as the natural morphisms on the remaining
components. Moreover, if U C X is an affine open subset and z € Ox (U) is
a local parameter, and if £ is trivial on U, Liy = 0 - Ox |y, then L® is trivial
on U generated by 6° = wy - dz, wg € I' (U, L") being the dual basis of 0. If
U = Spec(Ox & L) C X and U® = Spec(Ox & L°) C X¢, the restriction of the
universal superdivisor Z}' to U x U€ is given by the local equation:

Z1—22-0Q@6°=0, (4)

where z; = z®land z; = 1 ® z.
The above discussion can be summarized as follows: Let X = (X,0x =
Ox @ L) be a smooth proper supercurve of dimension (1,1).

Definition 6. The supercurve of positive divisors of degree 1 on X is the super-
curve of dimension (1, 1) defined as X° = (X, Ox®L") where L° = kx®o, L.
This supercurve is also called the supercurve of conjugate fermions on X'.

Definition 7. The universal positive superdivisor of degree 1 is the relative su-
perdivisor Z¥ of X x X° — X defined by the ideal sheaf Ker 9 earlier considered.
If (z,0) are graded local coordinates for X, the corresponding local equation of
ZVisz1—z;-0®60°=0,wherez; = z®1,z; = 1 ® zand 6° = wy - dz.

Theorem 3. The morphism of functors:
©: Hom(S, X°) — Divi (X x S),
p— (1xp) 12D,

is a functorial isomorphism.

By this representability theorem, the supercurve X°¢ of conjugate fermions
parametrizes positive superdivisors of degree 1 on the original supercurve X.
That means that positive superdivisors of degree 1 on X are not points of X as
happens in the ordinary case, but rather points of another supercurve X¢ with
the same underlying ordinary curve X.
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4.2. POSITIVE SUPERDIVISORS OF DEGREE 1 ON A SUSY-CURVE

This section will explore the relationship between points and positive superdi-
visors of degree 1 for a SUSY-curve (supersymmetric curve). This relationship
was first described by Manin (see ref. [23]), but it can be enlightened by means
of the supercurve of positive superdivisors of degree 1 defined above. Let us
start by recalling some definitions and elementary properties of SUSY-curves.
More details can be found in Manin [21-24], Batchelor and Bryant [3], Falqui
and Reina [9], Giddings and Nelson [11,12], Bartocci, Bruzzo and Hernandez
Ruipérez [2], Bruzzo and Dominguez Pérez [6], or LeBrun, Rothstein, Yat-Sun
Poon and Wells [18,19].

Let S = (S, Os) be a superscheme.

Definition 8. A supersymmetric curve or SUSY-curve over S is a proper smooth
morphism X = (X,0x) — S of superschemes of relative dimension (1,1)
endowed with a locally free submodule D of rank (0, 1) of the relative tangent
sheaf Tx;s = Dero; (Ox) such that the composition map

D ®o, D 1 Dero, (0x) — Dero, (Ox)/D

is an isomorphism of O y-modules (see, for instance, ref. [19]).

IfX¥ = (X,0x,D) is a SUSY-curve, X can be covered by affine open subsets
U C X with local relative coordinates (z, 8) such that D is locally generated by
D = 09/90 + 60/9z. These coordinates are called conformal.

There is a natural isomorphism D* = Berop, (Ox) and a “Berezinian differ-
ential”

8: Qys — D* =~ Bero, (Ox),

which is nothing but the natural projection induced by the immersion D — Ty/s.
In conformal coordinates 8 is described by 8 (df) = [dz®8/060]-D(f ), where
[dz®8/086] denotes the local basis of Berp, Ox determined by (z, 6) (see refs.
[15,23]).

I (X,Ox,D) is a (single) SUSY-curve, that is, a SUSY-curve over a point,
we have that Oy = Ao, (L), and there are isomorphisms D®p, Ox = L~! and

C®0X[,'—V->Kx.

This isomorphism if often called a spin structure on X. Conversely, a spin struc-
ture induces a conformal structure, so that a conformal structure on a proper
smooth supercurve is equivalent to a spin structure on it.

Now, there is a geometrical characterization of SUSY-curves in terms of su-
perdivisors:
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Theorem 4. Let X be a supercurve of dimension (1,1). Then X is a SUSY-curve
if and only if there is an isomorphism of supercurves X ~ X° between X and the
supercurve of positive superdivisors of degree 1 (conjugate fermions) on it inducing
the identity on X. Moreover, there is a one-to-one correspondence between such
isomorphisms and spin structures on X.

Proof. If Ox = Ox & L, then the structure sheaf of X°is Ox @ (L™ ®p, Kx ), 50
that an isomorphism X = X° inducing the identity on X is nothing but a Oy-
module isomorphism £ ™! ®p, kx = L, thatis, an isomorphism L®o, £ > kx.[]

Theorem 3 and the above result mean that for SUSY-curves, S-points are
equivalent to relative positive superdivisors of degree 1 on X x S — S, as Manin
claimed in ref. [23], and the universal relative positive superdivisor of degree
1 gives in this case nothing but Manin’s superdiagonal:

Let X be a SUSY-curve. If 4 denotes the ideal of the diagonal immersion
4: X — X x X, the kernel of the composition

4—4/4* > 4.9 25 4, Ber(Ox)

is a homogeneous ideal Z of Ox « » thus defining a subsuperscheme 4° called the
superdiagonal.

Lemma 3 (Manin [23]). The superdiagonal 4° = (X,Oxxx/T) is a closed
subsuperscheme of codimension (1,0). In conformal coordinates (z,0), it can be
described by the equation

zZ, — 22—0192 = 0,

where as usual z; = 1®zand z; = z® 1. O

According to lemma 2, the superdiagonal is a positive superdivisor. A simple
local computation shows that actually we have:

Theorem 5. Let X be a SUSY-curve, w: X = X° the natural isomorphism be-
tween X and the supercurve of positive superdivisors of degree 1 (conjugate fermi-
ons), and 1 x y: X x X = X x X° the induced isomorphism. Then

4= (1 xy) Nz,

that is, the isomorphism y: X =% X° given by the spin structure transforms by
inverse image the universal positive superdivisor of degree I into Manin’s super-
diagonal. O
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4.3. THE SUPERSCHEME OF POSITIVE SUPERDIVISORS OF DEGREE g

Let X be a smooth proper supercurve of dimension (1, 1) as above.

Definition 9. The superscheme of positive superdivisors of degree g of X is the
supersymmetric product S8 X of the supercurve X’ of positive superdivisors of
degree 1.

The universal superdivisor Z3 of X x S8X° is constructed as follows: let us
consider the natural projections

ni:Xx.l’“x-g-xX"—»XxXC,
(%, X7, ..., xg) = (x,x{),

the positive superdivisors of degree 1, Z; = m;(Z}') C X x ([]_, X°) and the
positive superdivisor of degree g, Z = Z, + -+ + 2.

Lemma 4. There exists a unique positive relative superdivisor Z of degree g of
X x SEXC — SEXC, such that n* (2}) = Z, where n is the natural morphism

g
X % (ch) - X x S8Xx°.

i=1

Proof. One has only to prove that Z; = n(Z2) is the desired superdivisor. This
can be done locally, so that we can assume that X = Spec 4 is affine and the
line bundles £ and xy are trivially generated by 8 and dz, respectively. Then,
the local equation of Z}'is z® 1 -1®@z—-0®6° = 0 [see eq. (4)], and 2 is
the superdivisor defined by the equation

g

0=[[(z-2:-66) =28 (51 +0-¢c)z8 " + - + (=1)8(sg + 0-g),
i=1

where z; = 7} (1®2),07f = =} (1®6°) and s;, ¢; are the even and odd symmetric

functions corresponding to z and 8¢ (see corollary 1). It follows that this last

equation is also the local equation of Z} in X x S€X° and one can readily check
that 7[‘(2;) = 2. a

4.4. THE REPRESENTABILITY THEOREM

This subsection will justify the above definitions by displaying the repre-
sentability theorem:
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Theorem 6. The pair (S8X¢, Z}) represents the functor of relative positive super-
divisors of degree g of X, that is, the natural map:

¢: Hom(S, S8X¢) — Divé (X x §),
feAxf)zg,

is a functorial isomorphism for every superscheme S.

Proof.

(1) ¢ isinjective: Let U = Spec A C X be an open subscheme of the underlying
ordinary curve X, such that xx and £ are trivial generated by dz and 0, respec-
tively. Let us consider the affine open subsuperschemes/ = Spec(A90-4) — X
and U¢ = Spec(A@®O°- A) — X where 0° = dz@wg e '(U,kx ® L7) =
I'(U,cc).

Now, S8U¢ — S8X° is an affine open subsuperscheme and the symmetric
functions 5;(z), ¢;(z,0%) (i = 1,..., g) form a graded system of parameters for
the graded ring S,f (A @ 0°- A). Let us denote it simply by s;, ;.

The family of the affine open subsuperschemes S€U/° so obtained (when U
ranges over the affine open subschemes of X where icx and £ are trivial) is an
open covering of S€.X° by affine open subsuperschemes such that the universal
positive superdivisor of U x S8U°® — U is the closed subsuperscheme Z;; defined
by the equation

28— (51 +0-¢)z8 4+ (=1)¥(sg +0-¢g) = 0.
Then one has that for these affine open subsuperschemes the map
¢u: Hom(S, S8U®) — Divi (U x S),
f=Uxf)z,

is injective: In fact, we can assume that S is affine, S = SpecB. Now, the
morphisms f : & — SEUC are determined by the inverse images of the symmetric
functions s;, ¢;. But these inverse images are determined by (1 x f)*Z}, since
the coefficients of the characteristic polynomial of z ® 1 acting by multiplication
on the B[6]-module O(;x ). zz are (=)' (f*(si) + 0- f£*(¢:)). This allows us
to conclude.

A straightforward consequence of this fact is that the map ¢ of the statement
is injective for every superscheme S.

(2) ¢ is an epimorphism: It is sufficient to prove that, given a relative positive
superdivisor of degree g, Z C X x S — S, for every geometric point p € S there
exist an open neighbourhood, V C &, and a morphism f,: V — S&X° such that
(Ix f)*(ZF) = ZN(X xV) = 2y, for, in that case, these morphisms define a
morphism f: § — SEX° fulfilling (1 x f)*(Z}) = Z by virtue of the preceding
subsection. Let 7: X x § — S be the natural projection and U = Spec 4 C X an
affine subscheme where xy and £ are trivial and such that (with the notation of
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the beginning of this section) the affine open subsuperscheme &4 C X contains
the superdivisor 7=!'(p) N Z — X. Thenn W = S~a(Z-ZN (U x S)) is
open, because 7 is a proper morphism, and it contains the point p € S. Let
V = Spec B C S be an affine open subsuperscheme containing p and contained
in W. By construction, if we put 2y = Znzn~!(V), then 2y is a relative positive
divisor of degree g of U x V — V), so that it is affine, 2,y = SpecC. Let dz,
@ be generators of xy and £, as usual. Now, according to the definition of
superdivisor, the ring C of 2y is a locally free module over B[] of rank g and
C = C/8 - C is the ring of an ordinary divisor of degree g of U C X.

Let us consider the morphism f,: SpecB = V — S8U° = Spec S,f (A f°-A)
induced by the ring morphism f;;: S,f (A®6°-A) — B defined, by means of the
determinant morphism, as follgws: Let S,f A — B be the determinant morphism
defined by the quotient ring C of 4 ®; B. This morphism endows B with a
structure of S,f A-algebra. But, by lemma 1, one has S,f (A®@° - A) = /\s,f M
for a certain free S,f A-module M generated by the odd symmetric functions ¢;;
then, by the universal property of the exterior algebra, defining f,; is equivalent
to giving a homogeneous morphism of degree zero of S§ 4-modules, M — B.
This morphism is actually characterized by the images of the functions ¢; (i =
1,..., g), and we define these images as the odd coefficients of the characteristic
polynomial of z ® 1 acting on the B[6]-module C by multiplication; this means
that, if the characteristic polynomial is z&€ — (a; + 6-b;)z8 1 4 - - 4+ (=1)8 (a, +
0 - b;), then we define f;(c;) = b;.

Moreover, one also has that £ (s;) = a; and then (1 x f)3,(2;}) is the relative
positive superdivisor of degree g of 4 x V — V defined by the equation

zZ8—(ap+0-b)z8 '+ + (=1)8(ag + 0-by).

On the other hand, this is the characteristic polynomial of z ® 1 acting by mul-
tiplication on the structure ring of Zy, so that this polynomial vanishes on 2y,
which means that Zy is contained in (1 x f)3,(Z}}). Since both positive super-
divisors have the same degree, they are equal, thus finishing the proof. O

4.5. THE CASE OF SUSY-CURVES

If X is a SUSY-curve, there exists an isomorphism : X =% X between X and
the supercurve of positive superdivisors of degree 1, as we proved in subsection
4.1. Then we have an isomorphism S¢X — S8X° between the supersymmetric
product of X and the superscheme S8.X° of positive superdivisors of degree g
on X, so that the representability theorem now reads (see ref. [8]):

Theorem 7. Let X be a SUSY-curve. The supersymmetric product S8 X represents
the functor of positive superdivisors on X, that is, there exists a universal relative
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positive superdivisor Z} of degree g of X x S8X — S8X such that the natural
map

¢: Hom(S,S8x) — DivE (X x S),
S (L f) 2,

is a functorial isomorphism for every superscheme S.

Moreover, since 1 x y: X x X = X x X° transforms by inverse image the
universal positive superdivisor of degree 1 into Manin’s superdiagonal, the uni-
versal superdivisor of X x S8X — S&X for SUSY-curves is constructed as in
lemma 4 with Manin’s superdiagonal playing the role of Z}..

Summarizing, only for SUSY-curves, “unordered families of g points” (the
points of S€X) are equivalent to “superdivisors of degree g” (the points of
SEX°).

We thank J.M. Muiioz Porras for many enlightening comments about Jacobian
theory and the geometry of the symmetric products, J.M. Rabin for drawing refs.
[28] and [29] to our attention and J. Mateos Guilarte, who first introduced us
to the vortex equations. We also thank the anonymous referee for some helpful
suggestions to improve the original manuscript.
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